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E S T I M A T E  O F  F R A G M E N T - F O R M A T I O N  I N  T H E  D E S T R U C T I O N  

OF A SPHERICAL SHELL 

S.  V .  S e r i k o v  UDC 539.74 

The study of the unsteady motion of meta l l ic  shel ls  up to rupture  under  the effect  of intensive loads is of 
p rac t i ca l  in te res t .  P a p e r s  of theore t ica l  and exper imen ta l  nature  a re  known [1-5] in which the question of e x -  
pansion of a spher ica l  shell  under  the effect  of explosive  loads has  been  examined.  

In this  pape r  the law of the unsteady motion of a hollow sphere  subjected to var iab le  in ternal  p r e s s u r e  
or  an initial ve loci ty  f ie ld is de te rmined  in the scheme  of an i so t ropic  i ncompres s ib l e  v iscoplas t ic  medium.  
In the case  of ideal p las t ic i ty  the shell  rupture  t ime  is  de te rmined .  A fo rmula  is der ived  to e s t ima te  the quan-  
t i ty  of f r agmen t s .  The r e su l t s  obtained a re  c o m p a r e d  with known exper imenta l  data. 

1.  F o r m u l a t i o n  o f  t h e  P r o b l e m  

A hollow sphere  subjected to a va r i ab le  in ternal  p r e s s u r e  or an initial veloci ty  f ie ld expands nonsta t ion-  
a r i ly  for  given initial  data.  On the outer  boundary of the sphe re  the re  is no motion.  The shel l  ma t e r i a l  is 
i so t ropic ,  incompress ib le ,  m d  sa t i s f i e s  the re la t ions  of a v i scoplas t ic  medium.  

F o r  cent ra l  s y m m e t r y  of the sphere  deformat ion,  we have the following equations fo r  file s t r e s s  t ensor  
components a t ,  a 0 ,  a ~ ,  the radia l  component  of the veloci ty  vec to r  v in the spher ica l  coordinates  r ,  0, 
outside the m a s s  force  field: 

Equation of motion of a continuous medium 

Or + (2~r--~0--~)=p ~ 4 - v ~ ;  (I.i) 

Continuity equation 

(r2v) = 0; 

The re la t ionships  of a v i scoe las t ic  medium [6] in spher ica l  coordinates  with cen t ra l  s y m m e t r y  

(1.2) 

2 0v  t 

1 v 
(1.3) 

Here  p is the density of the sphere  ma te r i a l ;  a s ,  dynamic yie ld  point; # ,  dynamic coefficient of v iscosi ty ;  and 
t >- 0, t ime .  
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The fo l lowing  cond i t i ons  a r e  s a t i s f i e d  on the b o u n d a r i e s  of the  s p h e r i c a l  s h e l l  r = R i (i = 1, 2, R 1 < 1%2): 

D y n a m i c  

K i n e m a t i c  

a r = - - p ( t )  at r = R x ,  % = 0  at r = R ~ ;  (1.4) 

d R J d t =  v at r = B i .  (1.5) 

The n o n s t a t i o n a r y  e x p a n s i o n  of a s p h e r e  u n d e r  the e f f ec t  of an e x p l o s i v e  t o a d  is  c o n s i d e r e d .  Two kinds  
of m o t i o n  a r e  l a t e r  d i s t i n g u i s h e d .  The f i r s t ,  when the  s p h e r e  mo t ion  s t a r t s  f r o m  a s t a t e  of r e s t  u n d e r  the  e f -  
f ec t  of v a r i a b l e  i n t e r n a l  p r e s s u r e  p(t) = P0(Rl0/R1)ST, w h e r e  y > 1 i s  the  i s e n t r o p i c  index  of the  de tona t ion  
p r o d u c t s .  In th i s  c a s e  t he  i n i t i a l  cond i t i ons  f o r  t = 0 have  the  f o r m  

R i  = Rio,  d R i / d t  ~-- 0, p = Po =fi= 0. (1.6) 

The s e c o n d  m o t i o n  i s  i n e r t i a / ,  when the  i n i t i a l  v e l o c i t y  f i e l d  i s  g iven .  T h e r e  i s  no p r e s s u r e  wi th in  the  
s p h e r e .  We t h e n  have  f o r  t = 0 

R i  = Rio,  P -= O, d R J d t  = Vio =/= O. (1.7) 

The e q u a l i t i e s  (1.1)-(1.6)  o r  (1.7) un ique ly  d e t e r m i n e  the  p r o b l e m  of t he  n o n s t a t i o n a r y  m o t i o n  of a s p h e r i -  
ca l  s h e l l  f r o m  an i n c o m p r e s s i b l e  v i s c o e l a s t i c  m a t e r i a l .  

2 .  L a w  o f  V a r i a t i o n  o f  t h e  S p h e r e  B o u n d a r i e s  

Subs t i t u t ing  (1.3) in to  the  m o t i o n  equa t ion  (1.1) and  t a k i n g  accoun t  of the v a l u e  of t h e  f i r s t  i n t e g r a l  in (1.2), 
we ob t a in  a f i r s t  d e g r e e  d i f f e r e n t i a l  equa t ion  in the m e a n  s t r e s s ,  which  i s  then  i n t e g r a t e d  wi th  r e s p e c t  to the  
v a r i a b l e  r .  Having  d e t e r m i n e d  the  va lue  f o r  a ,  v in t h i s  m a n n e r  f r o m  (1.3) a n d  (1.4), we o b t a i n  the  so lu t ion  
f o r  the  s t r e s s  t e n s o r  c o m p o n e n t s  cr r ,  a 0 , a r  a n d t h e  l aw of v a r i a t i o n  of t h e  s p h e r e  b o u n d a r i e s  i s  hence  d e t e r -  
m i n e d  b e c a u s e  of (1 .4)- (1 .6) .  

Le t  us  i n t r o d u c e  d i m e n s i o n l e s s  v a r i a b l e s  and  p a r a m e t e r s  f o r  the  i n i t i a l  d a t a  of (1.6) by  m e a n s  of the  
f o r m u l a s  

= R,/R o, r _ -  . .  = O / p o ,  . = Wa,ol/ - op, (2 ,1 )  
• = R~/R1, Xo = R2o/Rxo. 

In the  c a s e  of i n e r t i a l  m o t i o n  of the  s p h e r e  wi th  the i n i t i a l  cond i t ions  (1.7),  the  s u b s t i t u t i o n  P0 --" PV~0 m u s t  be 
m a d e  in (2.1). ' [ l le b a r  i s  h e n c e f o r t h  o m i t t e d  o v e r  the  d i m e n s i o n l e s s  q u a n t i t i e s .  

Then  to d e t e r m i n e  the  change  in the  i n n e r  r a d i u s  of t he  s p h e r e  s u b j e c t e d  t o  v a r i a b l e  i n t e r n a l  p r e s s u r e ,  
we ob ta in  a Cauchy  p r o b l e m  in the  f o r m  

w h e r e  
/~1 + alh~ + a~hl + a~ = 0, R~ (o) = t,  t}1 (o) - -  o, (2.2) 

2v (t--x -3) . ~R~-a (20. In •  R~-~); 

and  the  poin t  deno t e s  d i f f e r e n t i a t i o n  wi th  r e s p e c t  to  t i m e .  F o r  u = 0 the  p r o b l e m  r e d u c e s  to  one tha t  i s  
known [1]. 

Le t  us c o n s i d e r  a t h i n - w a l l e d  s p h e r e  when ~0 = 1 + e0, e0 = 6 0/R10 << 1, 6 0 i s  the  i n i t i a l  t h i c k n e s s  of the 
s h e l l  w a l l .  In th i s  c a s e  f r o m  (2.2) we obta in  a s e c o n d  o r d e r  d i f f e r e n t i a l  equa t ion  con ta in ing  a s m a l l  p a r a m e t e r  
in the  h i g h e s t  d e r i v a t i v e .  The m e t h o d  of c o n s t r u c t i n g  the  so lu t i on  of the  s i n g u l a r  p r o b l e m  in a s m a l l  p a r a m e t e r  
is  known (see  [7], f o r  i n s t a n c e ) .  We m a k e  t h e  s u b s t i t u t i o n  

i{i == Y,, R1 = VldVI /dR1.  (2.3) 

Then (2.2) r e d u c e s  to an  Abe l  equa t ion  of the  s e c o n d  k ind .  To f i r s t  o r d e r  a c c u r a c y  in G 0 f o r  a t h i n - w a l l e d  s h e l l  
we ob ta in  the  Cauchy  p r o b l e m  in the f o r m  
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~oV,~ + 2o~BTIL(2v~- 3 ~ 7 ' )  + R7 ~ (B~ (~-v) - 3~0a,) = 0 ,  L = 0 ~t R~-- t (2.4) 

because of (2.3). 

In the case  when t h e s p h e r e  mater ia l  cor responds  to the ideal plast ici ty condition (u = 0), f rom (2.4) we 
have the solution [8] in the fo rm 

i i  ]t/~ 
Vx -- (l - -  B7 ' )  [L 2 (x- '  - i) -2 (3o, - egax 3(x-~)) x-xdx . (2.5) 

The integral in (2.5) is expressed  in e lementary  function for  specific ~ > 1, integers,  f o r  instance.  We 
hence obtain a law of var ia t ion of the sphere inner  boundaries in quadratures .  Construction of the solution for  
the more  general  case [Cauehy problem (2.2)] was by the Runge-Kut ta  numer ica l  method. As an i l lustration, 
the numerica l  computation of the problem (2.2) is represen ted  in Fig.  1 for  the dimensionless quantities R 1, t 
for  the fixed pa rame te r s  u = 0.1, ~r = 1.20, y = 2.5. Curves 1-3 in Fig. 1 correspond to the values of the 
dimensionless p a r a m e t e r  a .  = 0, 0.1, 1.0. 

The nature of the change in the inner radius of the spherical  shell with respect  to t ime is shown in Fig. 2 
for  different values o f  the p a r a m e t e r  u: 1) u = 0, 2) 0.1, 3) 1.0. The remaining pa rame te r s  are  fixed a ,  = 
0.1, n0 = t.20, 7 = 2.5. F r o m  the computations there  also follows that the rate of sphere expansion diminishes 
when the p a r a m e t e r s  n 0, 7 increase .  

Now, let the sphere  expand by iner t ia  with the initial data (1.7). In this ease the law of variat ion of the 
sphere  radius R 1 is determined f rom the analogous Cauchy problem (2.2), where the variable coefficient a a 
takes the form a s = 2 a . n  In n / [ ( n  - 1)RI]. Fo r  a thin-walled shell,  because of (2.3) we obtain to f i r s t - o r d e r  
accuracy  in e0 a Cauchy problem to determine R1 for  inertial  expansion of the sphere in the fo rm 

-{- 2R~-IV1 (2V 1 -- 3~RI "1) --  3a.B71 -~ 0, V 1 = i for R 1 := t. (2.6) V1 

Here in expanding the coefficients aj  (j = 1, 2, 3) in a se r i e s  i n the  small  pa r ame te r  e0, this la t ter  enters  the 
differential equation (2.6) in a rogular  manner  [7] start ing with the power e~. The solution of problem (2.6) 
fo r  u = 0 has the fo rm (see [8], for  example) 

Wl= t V ~  (~@ (~ - -  n14)  {(R~ - -  t ) -1  - -  In (~4 - -  ~)]1/2. (2.7) 

The law of motion of the inner radius of the sphere  is de termined in quadratures  f rom (2.5) and (2.7) by the 
formula  

R1 
d= (2.8) 

t ~ .  V--~-~. 
1 

Let us note that (2.5) and (2.7) express  the energy conservat ion law. For  instance, af ter  raising both 
sides to a square,  f rom (2.5) we obtain the following energetic relationship pe r  unit mass  
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Ri 

where I0 = ( t  - -  B ~ 4 ) 2 ~  ~ ~ ( l  - -  x -4 ) -~x~- : r~dx  is the work of explosion products;  V2/2, kinetic component of the 
1 R1 

sphere energy; 11 = (i - -Bi - ' )  ~ 3~, S ( l -  x - ' ) - ~ x - ~ d x  , work of plastic deformation.  
1 

In par t icular ,  formulas  to determine the inner radius of the sphere  at the time of its maximal expansion 
(V l = 0) can be obtained f rom (2.5) and (2.7) without disturbing the continuity. Approximately they have the 
form 

Fo r  a sphere  under p r e s s u r e  (for y = 3) 

L ~ Y  

For  inert ial  motion of the sphere 

PVz~o 
Rlt* Rl~ l +- - ~ s  )" 

Certain destruct ion of the sphere (Rlp ~ oo) follows f rom (2.8) in the case of compliance with the re la -  
tionship 

Po t> 3crfiolRlo. 

The connection between the values of R 1 and R z of a thin-walled sphere is expressed  by the relationship 

To the same degree of approximation we obtain f rom (1.2) and (1.5) for  the velocit ies V t = 1~ 1, Vz = R2. 

(2.9) 

3.  D e s t r u c t i o n  o f  t h e  S p h e r e s  

The t ime cr i ter ion fo r  prepar ing a body for  destruct ion and the integrated time cr i te r ion  for  total joining 
of the cracks onthe basis of the equation of nonstationary crack growth should be satisfied [9] for total destruc- 
tion of a solid over the section under consideration. The dynamic criterion for crack joining and total destruc- 
tion reduces to the integral relationship [10] 

i qcdt  - -~o'  (3.1) i_l~kln i 
0 

where 7 is the time of destruction; q, density of the energy being l iberated by the sound wave; c, sound speed; 
a ,  work to form unit c rack  area;  k, reflection coefficient of the acoustic wave enegy flux averaged over  time; 
S o , initial f ract ion of the area  of the body sect ion under considerat ion that is overlapped by c racks .  The effec-  
tive energy of dynamic destruction ~ .  = (~ In So) / (k - 1) is determined f rom experiment .  

Taking account of the volume of the problem of sphere expansion for  q = a Z o / E ,  by analogy with a ring 
[11] we obtain the following integral equation f rom (3.1) 

, , o R .  ( t  - R ~ / R ~ )  dt  = 13R~, ( 1  - -  R ~ , / R . , ) ,  I~ = ~ , ( 3 . 2 )  
�9 - c P o R l o  
o 

where E is YoungTs modulus; R I , ,  R2, ,  values of the sphere  radii at the t ime of destruction; T,  = T "r �9 
(Rio)-I, dimensionless t ime of shell destruct ion under  the effect of internal p re s su re ;  and T,  = 7V~o/Rio, ine r -  
tial case.  The c i rcumferent ia l  s t r e s s  ~ of a viscoplast ic  sphere o n t h e  outer boundary has the following form 
because of Sec. 1 and (2.1) 

(~o --  ~:'... '.- 3 v B  : lR ~_ (3.3) 

Let us consider  a thin-walled sphere when n0 = 1 + e0, e0 << 1. To f i r s t - o r d e r  accuracy,  we have 

2 2 

TaMng account of (3.2) and (3 03), we hence obtain 
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j" ((1~ -}- 6vcl,e -~- 9v2e 2) R~Idt ----- ~R~ 1, e = h2/R2o (3.4) 
0 

Let us examine (3.4) under the assumption that the t rue s t ra in  rate is a constant (~ = const). Then we 
ar r ive  at the following relationship for  tile plast ic deformation e = R2,/R20 - i f rom (3.4) 

e = ~e'(a,:-p 3re) ~. (3.5) 

Analyzing (3.5); we note the existence of a maximum for  the plast ic  deformation equal to ema x = f i /12u(~, ,  
for  ~ = a , / 3 p .  This singulari ty of the dynamic behavior of viscoplast ic  media (the dynamic peak of plasticity) 
was f i r s t  obtained and interpreted by test data in the case  of explosive deformation of tubes in [11]. Fo r  axi-  
s y m m e t r i c  viscoplast ic  deformations of a tube under the effect  of an internal load, the c i rcumferent ia l  s t r e s s  
on the outer boundary is expressed  by the formula  a 0 = a ,  + 4uR~/R 2 in our notation [12]. Then, repeating 
the preceding computations,  f rom (3.2) we obtain for  the plast ic deformation of a tube analogous to (3.5) 

e ---- [~e (a, + 4re)'. (3.6) 

The relat ionships  (3.5) and (3.6) confirmiile deduction formulated in [11] that the existence Of a dynamic 
plast ici ty peak is general  in nature for  the destruct ion of a shell and the s implest  s t ruc tu res  fabricated f rom 
viscoplast ic  materials~ 

4 .  E s t i m a t e  o f  F r a g m e n t  F o r m a t i o n  

At the present  time a quantitative descript ion of the rate and t ime of destruction of a sphere by using the 
energet ic  c r i te r ion  (3.2) is problematical  because of the absence of tes t  data for  a , .  Here we use the s implest  
c r i te r ion  for  destruct ion in the achievement of the limiting plast ic deformation e ,  = R1,/R10 - 1 with the en- 
erget ic  relat ionships (2.5) and (2.7) taken into account. Such an approach yielded good quantitative est imates  
for  the descript ion of explosive destruct ion of meta l  rings (see [13, 14], for  instance).  

Because of (2.1), we have R1, = 1 + e ,  on the inner boundary of the sphere at the t ime of destruction.  
Taking the approximation in[(1 + e , )  4 - 1] -~ i n 4 e , ,  e .  In 4e ,  - - e , ,  [1 - (1 + e , )  -4] - 4 e , ,  for  V =3,  we 
obtain f rom (2.5) and {2.8) fo r the  value of the veloci ty of the inner boundary at the t ime of destruct ion and for  
the t ime Qf destruction,  respect ively  

Vx ,= y f ~ [ i  5 3~,% -- 4 (t --  3~*e0) e,] ~n, T~ = ~f2%e,(t-P ~,e0) x"" (4.1) 

In the case  of inert ial  expansion of the sphere  in the ideal plast ici ty scheme, we have f rom (2.7) and (2.8) 
(to the same accuracy) 

T - -  
V1, ~- t - -  l /~- ,e , ,  Tx = e , [ i  + 2  V - ~  a ,e , ] .  

The t ime when the destruct ion front  reaches  the outer shell boundary is determined by the equality 

(4.2) 

R2, 

1"2 = V 2 ( z ) '  
x 0 

Because of (2.9) and (2.10) we hence obtain to f i r s t  o rder  accuracy  in ~0, that 71 = T2 = 7 , .  Here we note the 
relationship e = e ,  (1 - 3e~ ,  e = R2,/R20 - 1. 

Fo r  la ter  we make specific the nature of sphere destruct ion by analogy with an annular shell [13]. Name-  
ly, we assume that destruct ion occurs  by using radial  c rack  formation,  and the equality l = e T holds for  the 
est imate of the charac ter i s t ic  dimension of the f ragments ,  where in conformity with the dimensionality T = 
T,R lo / (po /p ) l /2  in the case of destruction of a sphere  under  the effect of internal p re s su re ,  and 7 = 7,1~0/V10 
in the inert ial  case.  

In substance, the value of l charac te r izes  the d iameter  of the base of spherical  segments  into which the 
shell is ruptured. The quantity of f ragments  n is es t imated by the rat io between the sphere  surface f = 4~RI .  
and the side surface of the spherical  segment  f ,  = 2~R2, [R2, - (R2, - l  2/4)  i/2] ; hence, 

= / / / ,  = - - - 1  ( 4 . 3 )  
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TABLE 1 

Sphere material 

Duraluminum g~=0,29GPa10,5215tt0 2,71] 94 t i i t  

Copper o s = 0.22 GPa 

Titanium o s = 0.37 GPa 

0,57 [ 3980 

t0,35 14847 

Zincos=O.12OPa I 0,52 13700 

8,89 I 46 [ t65 

4,51 1 74 I 2t9 

7 , 1 4 1 6 8 ] 2 2 3  

TABLE 2 

o-10~, [ ~e" ~e/~ Sphere material e k / '% 
~w ~ec ~sec i 

Duraluminum o s = 0.29 GPa 0,52 2,7t 9,9i [ t0,0 
I 

t,01 
i 

Copper g s = 0.22 GPa 0,57 8,89 [ t9'44 19,5 1,00 

Steel 0s=0-32 GPa 0,33 17,85 1t4,12 I t6,0 1,t3 

T A B L E  3 

R'~176 I6~ ~ 
t53 2,6 

t53 2,6 
38,t 3,4 

38,t 

V l o ,  m / t  

s e c  

43,4 

30,0 

87,8 

V,~ m/ 
s e c  

42 

29 
74 

7-s �84 
e ,% 

~ec 

3,5 303 

1,8 231 

4,7 37 

%e" 
~sec 

400 
200 

30 

34 

F r o m  (2.1) and (2.9) t he re  fol lows 

/L,. : /~10 (l -}- e,) [t q- %/(t -q- e.)"] ; 

then because  of (4.1)-(4.3) we obtain r e l a t ionsh ips  to e s t ima te  the quantity of f r a g m e n t s  dur ing  des t ruc t i on  of 
the sphe re  unde r  the ef fec t  of  in t e rna l  p r e s s u r e  np of an ini t ial  ve loc i ty  f ield n u, r e s p e c t i v e l y  

, , .  o,),o] o, 
Pc'eoe* L e,) s 

]?~  - -  __" Y l o  . t -~- 8 0 / ( 1  - -  : r 

(4.4) 

(4.5) 

In p a r t i c u l a r ,  an i nc rea se  i n  the quant i ty  of f r a g m e n ~  as  the ini t ial  p a r a m e t e r s  Rio, P0, Vi0 i n c r e a s e  fo l -  
lows f r o m  (4.4) and (4.5), which  a g r e e s  with the gene ra l  deduct ions  in [5, 13]. As an i l lus t ra t ion ,  t he  computa t ion  
of the quant i ty  of f r a g m e n t s  by means  of (4.4) and (4.5) is r e p r e s e n t e d  in Table 1. Here  the l imi t ing  quanti ty e 
and the value of a s a re  wr i t t en  in c o n f o r m i t y  with the expe r imen ta l  inves t iga t ions  [1] fo r  the de s t ruc t i o n  of a 
sphe r i ca l  shel l  of radius Rio = 0 . 1 1 5 m  with a wal l  t h i ckness  of 6 0 = 0.005 m (e0 = 0.043). A sphere  of d i f f e r -  
ent  m a t e r i a l  sub jec t ed  to an explos ive  subs t ance  (hexogene) with an initial p r e s s u r e  of P0 = 15.7 GPa  is ex -  
panded in tens ive ly  to  des t ruc t ion .  In ihe case  u n d e r  cons ide ra t ion ,  the explos ive  f i l ls  the inne r  volume of the 
shel l  comple t e ly .  The computa t ion  of the quant i ty  of f r a g m e n t s  by means  of (4.5) is r e a l i z e d  fo r  V10 = 300 
m / s e c .  
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There are no experimental  and theoret ical  data in [1] on an est imate of the quantity of f ragments  during 
destruct ion of the shells being investigated, but experimental  values of the t ime to dest roy spheres  of duralumin, 
copper ,  and low-alloyed steel are given, respect ively:  T e = 10.0, 19.5, 16.0/~sec. Let us compare these r e -  
sults with the computed values obtained by means of (4.1) in dimensional form with (2.1) taken into account. 
Initial data on a s ,  p are represented  in Table 2 for  the shell mater ia l ,  as are also experimental  values for  the 
limiting plast ic deformation e, the t ime of destruction Te according to [t], and the computed T. Here the geo- 
met r i c  dimensions ofthe she l l a re  Rio = 0.115 m, 6 0 = 0.005 m for  an initial p r e s su re  of P0 = 15.7 GPa. 

We now turn to exper iments  [4] when the maximum velocity of destruct ion of the outer shell surface ,  
which cor responds  to V20 in our  case,  the t ime of destruction Te, and the limiting magnitude of the deformation 
e, were r ecorded  for  explosive loading of spherical  shells.  The explosive charge (50/50 TG) of density p ,  = 
1.65 �9 103 k g / m  3 in the f o r m  of a sphere  was placed in and initiated at the center  of the shell. In all the tests  
there  was a substantial  gap between the charge and the shell inner surface ,  which corresponds  to pulse loading. 
The motion of the sphere boundaries is here  rea l ized by inertia.  Experimental  Te and computed T resul ts  of 
the destruct ion t ime are  represented  in Table 3 together  with the initial data. The determination of T was by 
means of (4.2) with (2.1) taken into account. The vesse ls  considered he re  were fabricated f rom steel 35 with 
different initial geomet r ic  pa r am e te r s .  The mechanical  proper t ies  of the mater ia l  were determined in [4] for  
quasistat ic  extension of the specimens:  a0 = 0.29 GPa is the yield point, and eb  = 0.54 GPa is the strength.  
Hence, according to the resul ts  of [15], the dynamic yield point is a s = 0.345 GPa. For  a known initial loading 
rate of the outer  shell surface V20 the velocity V10 needed for  the computation was determined f rom the re la -  
tionship in the initial pa r ame te r  Vi0 = ~V20, known for  a sphere.  

As follows f rom Table 1~ the actual appraisable resul ts  on determining the quantity of f ragments  are ob- 
tained for  explosive loading of spherical  shel ls .  In par t icular ,  the quantitative relat ions in the time of des t ruc-  
tion of a sphere when it expands intensively until rupture under the effect of var iable  internal p re s su re  
or  an initial velocity field, are  in sa t i s fac tory  agreement  with experiment.  
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